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• Sleep disturbance is considered a potential risk
factor for cognitive decline and dementia1,2.

• Large-scale studies are needed to reveal the
relationship and neurobiological mechanism.

• Previous large-scale studies (N ≈ 40,000 &
500,000) using the UK-Biobank data highlighted
a significant, non-linear relationship between
sleep duration and cognitive performance but
with a small effect size3,4.

Aim:
In this study, we performed machine learning
(ML) analysis based on both self-reported and
objective sleep duration and sleep efficiency
and brain structure data using the ENIGMA-
Sleep5 data to predict cognitive scores at the
individual level.

ENIGMA-Sleep Datasets
SHIP-Trend:
• N = 831 (396 Female, 435 Male)
• Age 21-81 (52.7 ± 13.5)
• Stroop interference score

1-113 (20.2 ± 11.4)

Liege:
• N = 192 (99 Female, 93 Male)
• Age 50-82 (64.0 ± 7.1)
• Stroop interference score

-0.02-0.57 (0.22 ± 0.14)

• Stroop interference and reaction time scores can be weakly but stably
predicted by sleep measurements, brain structure, and demographic data
based on non-linear ML models.

• The nonlinear relationship between sleep measurements and cognitive
measurements can be revealed by model explanation.

• Model explanation showed:
∘ Predicted variance is driven by the interaction between sleep, brain, and

demographic data (mainly age).
∘ Older subjects with shorter sleep and younger subjects with longer sleep

contribute to the prediction.
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Covariates:
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Machine Learning Pipeline
Features

Sleep measurements:
• Sleep duration & efficiency from 

polysomnography (PSG) & 
Pittsburgh Sleep Quality Index 
(PSQI)

Brain structure data:
• Cortical thickness & surface 

area (Desikan-Killiany, Schaefer 
400 atlas)

• Subcortical volumes (Aseg)
Covariates:
• Age, Sex, BMI, Depression 

score

Model comparisonFeatures comparison

Random Forest and SVM-rbf showed weak but stable prediction to Stroop Interference Score in both SHIP-Trend (left) and Liege (right) datasets.

• Non-linear models showed successful prediction compared to dummy regressor (predict target’s mean value). ML models are better than poly-regression.

Model comparison by features in SHIP-Trend by Random Forest

• Stroop interference score can be predicted with sleep,
subcortical, and demographic data by ML model.

Model explanation by SHAP in SHIP-Trend by Random Forest

• Feature importance based on SHAP value
(left: Sleep + Covs; Right: Sleep + Covs + Subcortical)

• Feature interactions showed by SHAP value

Sleep + Brain Cognitive 
Performance

ns: p <= 1.00e+00; *: 1.00e-02 < p <= 5.00e-02 ; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04 (same below)

Gap:
• These studies were primarily cross-sectional and

limited to a UK-based sample, thereby
constraining the generalizability of the findings.

• Machine learning methods enable individual-
level predictions and can validate models on
unseen data, thus providing a more robust
analytical framework.
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